Smart skin is self-powered by frictional contact

18th April 2016
Posted By : Enaie Azambuja
Smart skin is self-powered by frictional contact

Researchers have fabricated a smart skin that is self-powered by its frictional contact with the objects that it touches. When a honeybee crawls across the smart skin, the skin not only senses the insect, it also uses the spontaneous triboelectric charge that builds up between the honeybee and the smart skin to power its sensing ability, eliminating the need for batteries. The smart skin could have applications for robots, artificial intelligence systems, and bionic limbs for amputees.

The researchers, led by Haixia Zhang at Peking University in Beijing, have published a paper on the smart skin in a recent issue of ACS Nano.

"For conventional electronic skins or smart skins, they all need a power supply," Zhang told "This is a serious problem. It's awkward for users to take a thin, flexible and light-weight smart skin together with a hard and heavy battery that can work only for hours. The self-powered smart skin fundamentally solves this problem."

As the scientists explain, triboelectric charges occur anywhere two objects touch each other, although these charges are so small that they often go overlooked.

This self-powering method is possible because the smart skin consumes very little energy in the first place. Most other previously developed smart skins are digital, meaning their resolution sensitivity is determined by a grid of pixels. Increasing the resolution usually requires increasing the number of pixels and electrodes.

In contrast, the new smart skin uses an analogue method that requires only four electrodes. The electrodes are positioned at four opposite ends of the smart skin. When an object, such as a finger, applies a pressure to the smart skin, it generates a current through the skin that induces a voltage on each electrode.

Since the distance between the applied force and each electrode is different, the voltage at each electrode will also be different, and the relative voltages can be used to pinpoint the location of the applied force.

The researchers' experiments showed that, when wrapped around a robotic hand, the analogue smart skin can determine the location of an applied force with an average resolution of 1.9 mm. To demonstrate the high sensitivity of the smart skin to very small forces, the researchers showed that the smart skin can detect the presence of a 0.16-gram honey bee, as well as a jumping cricket.

In the future, the researchers hope to further improve the smart skin by increasing its detection resolution and sensitivity, which can be addressed at a low cost since these improvements do not require additional electrodes. The researchers also plan to develop ways to shield the smart skin from interference from the environment and other electronic components, which poses a problem for when the smart skin is integrated into mobile phones.

You must be logged in to comment

Write a comment

No comments

More from Peking University

Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

Wearable Tech Show 2019
12th March 2019
United Kingdom London
The Security Event 2019
9th April 2019
United Kingdom NEC, Birmingham